! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,

Σχετικά έγγραφα
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Power allocation under per-antenna power constraints in multiuser MIMO systems

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).


A Method for Determining Service Level of Road Network Based on Improved Capacity Model

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Quick algorithm f or computing core attribute

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

Homomorphism in Intuitionistic Fuzzy Automata

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem


Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

The one-dimensional periodic Schrödinger equation

Α Ρ Ι Θ Μ Ο Σ : 6.913

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Robust resource allocation algorithm for cognitive radio system

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

SONATA D 295X245. caza

(2), ,. 1).

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

High order interpolation function for surface contact problem

Approximation Expressions for the Temperature Integral

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Research on model of early2warning of enterprise crisis based on entropy

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Japanese Fuzzy String Matching in Cooking Recipes

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Το άτομο του Υδρογόνου

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Durbin-Levinson recursive method

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

α & β spatial orbitals in

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)

Prey-Taxis Holling-Tanner

(... )..!, ".. (! ) # - $ % % $ & % 2007

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Empirical best prediction under area-level Poisson mixed models

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M.

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

= 0.927rad, t = 1.16ms

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

M p f(p, q) = (p + q) O(1)

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

#%" )*& ##+," $ -,!./" %#/%0! %,!

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

a,b a f a = , , r = = r = T

Smart Motor Controllers TM

ST5224: Advanced Statistical Theory II

Transcript:

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< \ -S;? P A" ( 6M [ X& 5 +; \ ; D7 ] +; I$ X & >?# ; U (6 3 I q +W R% RBH % a >M 5 د! "#$#% & '( a.khan9@ms.tabrzu.a.r >" *+ + LN6 H+ +ˆ, ghaem@tabrzu.a.r >" *+ "3Q G+ +!" I" " mbadamh@tabrzu.a.r >" *+ "3Q G+ + 3, + *ق 394-3 69 5 (393//4 :[l/ m" 393//9 :, m" ) ISSN: 3-346 htt://nsee.sut.a.r +V -S E -;3 K, D -;3V K, :3J -S K, E + -;3 K, E A+< [ H= @+ :I5r @( V V +/.3VV EV:+ VDV F! F KE + +9) ),.3VV CV @/ h 3 : }+3" Z(" +9), -;3 K, :3J 3 : }+3" k3" +3VCH B3V) V VEV K, 3? +(" 3 : }+3" +9), -;3 K, E + }K3" K+5 [ B4 D! -S K, E 3 vc + 3< V 3VV V,D V\ KV, X3V/H }" F +/ >HO +.+ X( (non-pdc) K+3.O.+ g++ @( +/ +! F (LMIs)!"! B3) +/ k+ 3<!" -;3 K, -S E +9), +/ >HO K, X3/H }"!"! (LMIs) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 5 Sahand Unversty ofehnology Journal of Nonlnear Systems n Eletral Engneerng Vol.3, No., Summer 5 ISSN: 3 346 htt://nsee.sut.a.r Stablty Analyss and Controller Desgn for Interval ye- -S Fuzzy Systems Based on Interval ye- -S Fuzzy Observer Under non-parallel Dstrbuted Comensaton and Fuzzy Lyaunov Funton Aroah Arman Khan, Sehraneh Ghaem, and Mohammad Al Badamhzadeh 3 Faulty of Eletral and Comuter Engneerng, Unversty of abrz, abrz, Iran, a.khan9@ms.tabrzu.a.r Corresondng Author, Assstant Prof., Faulty of Eletrall and Comuter Engneerng, Unversty of abrz, abrz, Iran, ghaem@tabrzu.a.r 3 Assoate Prof., Faulty of Eletral and Comuter Engneerng, Unversty of abrz, abrz, Iran, mbadamh@tabrzu.a.r ABSRAC Keywords Interval tye- -S fuzzy model, Stablty analyss, Fuzzy Lyaunov funton, Lnear matr nequaltes (LMIs) In ths aer, we nvestgate the desgn method for nterval tye- (I) -S fuzzy ontroller based on I -S fuzzy observer for nonlnear systems along wth unertanty arameters. In order to analyze the stablty and synthess the ontrol methods onvenently, an I ( S) fuzzy model s aled through reresentng the dynam of nonlnear systems and dynam of observer. Unertanty arameters are atured by I membersh funton haraterzed by the lower and uer membersh funtons. In ths aer, for I fuzzy ontroller, the membersh funtons and number of rules an be freely hosen dfferent from the I S fuzzy model and I -S fuzzy observer. hs method s known non- Parallel Dstrbuted Comensaton. o redue the onservatveness of stablty analyss, a fuzzy Lyaunov funton anddate s aled. he stablty ondtons n term of lnear matr nequltes (LMIs) are obtaned. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 5 53" -S E K, D + -;3 K, :3J :- -S E K, E + E + [ @"s+ (PDC )K+3 }K3" K+5 X3/H +/ 3".+ f95 3 + K ==6 -;3 K, :3J -S E K, D + -S E E! +/ >HO A+< O 3 A+< D+5 B3N D F E F!K + 3< E A+<.[7-] O (LMI 3 )!"! K+ +:3J B3N +/ w K, E! K, E K O + 35 HA -S E K, D 3 A -S E K, -S E! -S E P HA.[8] HA @C" }"! HA }" D!K " + g++ [.+ + K, 3? +(" E -S E D +/.+,D \ +/ >HO + 3: X3/H }" F D-S E -S B3N E - 3\.O 353 +/ >HO 6 + @G!K 7" + 3: X3/H }" -+>,+ {: +,D \ K, X3/H }" ( X3/H }+3" ++ +/ >HO 6.[9] + A+< l/ X(+ z+ K, X3/H }" + *! 3 : }+3" LG X3/H }" @,D \ 3\ ( E 3\ -;3 K, :3J ++.+,D \ [4 - ] -;3 K, :3J L? -;3 K, :3J 3 : }+3" 3! +/ (.[5] + g++ Bh= Bh= -;3 K, :3J @(! E 95 K+ 49 C.[5] O +9), -;3 K, :3J -;3 K, :3J K+ 3\ MA H=.[6] 3 K, :3J! E B==6" ( ++.3,D \ + 3 3 : KE [ [6].[8-6 4] + 7J+ -S E K+ 4 + @(! E -;3 9)+ + MA H=.+ g++ LN4 3< - ;3 K, :3J K+ 4 + @(! +5 G z+ +9), -;3 K, :3J -S E z+ K, D + E A+< >H O +/ >HO + K, X3/H }" @,D \ (non-pdc) K+3 }K3" K + E -S E K, 3? +(" D -S E! -S E K, 3? +(" D! K, E! E + K, 3? +(" @,D \ +3" 3< E A+< K D.., +E f 3 : }+3" @,D \ @I ( + D E 3 7= PDC G! E D [ @+ D akag - sugeno Parallel Dstrbuted Comensaton 3 Lnear Matr Inequlty Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 53 >H D -S E! -S K, E 3 : }+3" H= @+ @I.! +/ K, K f 3 : }+3" @,D \ +3" }+3" @I O + 3 b+< 3< O!!? K+ 4 + O K+ +/ >HO K, K K Y 6 + K!? + @+ 3< D K++ L?! K+ HA }" 4D \ 3 :.3 3! B3N E D -S K, E! -S K, E E! +/ k+ +9), -;3 K, :3J! -S K, E -C + + ++.3 g++ (LMI)!" -E 4 -C.3 g++ +9), -;3 K, :3J D -S K, E 3 -C.3 g++! -S E E! 5 -C.+ +9), -;3 K, :3J E S K 7 -C.+ g++ +/ >HO 6 -C.3 g++ E -S E D -S E.+ DJ O -C.3 [6] +; -\ ; W Rb? A" -S; - Z(" K B3N ψ K, 3? -;3 K, :3J -S E K,! F Rule : IF f () s M % and,...,f () s M% HEN & = A + B u =,,..., ψ ψ () :3< f ( ) K, u + +K, 3? w3 +9), - ;3 K, :3J F M% O `" HA `" f"" B, A O B R, A R n m n n @I. =,,..., ψ, =,,..., +٢ -;3 -S K, E. H E* u R m l! HA + R n l.! : K B3N 7+ 3? + 3 L U w (), w (), =,,..., Z(" @/ h K 3? () :O w () = µ (f ()) µ (f ())... µ (f ()) L M M Mψ w () = µ (f ()) µ (f ())... µ (f ()) U M M Mψ ψ ψ (3) :3< Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< µ (f ()) [,] M µ (f ()) [,] M 54 (4) : ) >K + +lh. <3 3 : }+3" h @/ 3 : 5 f" µ (f ()) µ (f ()) M U M w () w () L :3 (5) K! J (6) :O K + B3N! -S K, E L U = = & = w ()v ()(A + B u) + w ()v ()(A + B u) = w % ()(A + B u) = w % () = w ()v () + w ()v () [,] L U w % () =, v () [,], v () [,] = (7) :O (8) :3<.3,D \.5 + h3(! }+3" v (), v () O [8] -;3 K, :3J O +; -\ ; W Rb? D7-S ; -3 7= w * \ K, 3? + +9), - ;3 K, D F (9) + B3N D w3 K, 3?. D G! J w :!G D (7)! -S E w3 K, K Rule : If f () s M % and,...,f () s M% hen & ˆ = A ˆ + B u + L (y y ˆ ), =,,..., ψ ψ (9) f ( ) K, u + 7+ K, 3? w3 +9), - ;3 K, :3J F }+3" K, u + @+, J+. [8] + e += F ψ =,,..., ψ, =,,..., M% O :3<! K! >J"!? D K++ L?!! K+ HA }" 3 : Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 55 O B+u" 6 K+ k=, + 35 DK++ L?! K+ HA K, u D+ DK++ L? HA K+ k=, 3 : }+3" @,D \ + 3 4 + KE 3\ HA + R n l.! `" HA `" f"" (٩) +.3 @(" D L B R, A R n n n n +/. H E* u R @I.3 4 + m l! HA B3N D 5! 5 f"" ŷ y @I. HA @C" ˆ :3 Z("K y = y ˆ = = = w % ()C w % ()C ˆ () -S E! -S E 5 `" C `" + D -S E! -S E 5 `" @I. () + B3N 7" 3 w % (), H= @+ O D :(. C = C =... = C = C ().O K + B3N D -S K, E J ˆ& = w % ()(A ˆ + B u + L (y y) ˆ = () +; -\ ; W Rb? IPP -S ; -4.3 g++ () D 3 A (7) -S K, E +/ 3\ +9), -;3 K, E ++ : [8] K+ K, 3? 7= w!? k=, K + B3N E w3 K, 3? Rule : IF g () s N % AND... AND g () s N % HEN u = G ˆ ψ ψ (3) +9), -;3 K, :3J % N 3 @(" : [8] @,D \. HA F, =,,..., ψ, g () m n G R, =,,..., K, u K, 3? @ + 3< w3 Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< M () m (),, = m () ψ m () = µ (g ) = ψ = N% m () = µ (g ) N% µ (g ) µ (g ) N% N% 56 (4) (5) (6) (7) 3 : 5 7+ h 3 : 5 f"" m () + @+, (7) " (3) k+.[ 8] K, 3? @ + m () µ N % (g ()) µ N % w3 @/ K h K 7+ (g ()) O @/ @+ +("! DK++ L?!! K+ HA }" E w3 3 : }+3" K, u B3N E 3?. D! K, E w3 K, @+3? +("! @+3? :3 Z(" K + B3N HA F, u = % = m ()G ˆ (8) : [8] O β ()m () + β ()m () m () =, m () = % % = ( β k ()m k () + βk ()m k ()) k= (9) ) β + β = ( ) ( ) + Z(" -/ K+ u β [ ], β [ ] O. [8] 3,D \.5 + h3( IPP -S D 7 -S a A" -S? P A"-5! HA +/ E* +/ X K + B3N E* Z(" D A+<. []K @C" +! HA D ( L 4) ) 3 +/ E* D+ 3< e = ˆ () : [] O K B3N + () () w D E J () when t () ˆ when t () :[8] K!" @,D \ () (8) () (7) + 53" w % () = m % () = w % ()m% () = = = = = () Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 57 :O K + B3N (8) E () D (7) -S K, E E! F = = = = { } & = w % ()m% () (A + B G ) B G e { } e & = w % ()m% () (A L C)e (3) 3< 3 +/ (3) E! +3D L G HA F, +/ X O +!? @+. J +! HA K+ @C" D L 4)! HA.3 4 + m %, w% K+ m % (), w % () 5 D ( 6M-6,D \ K + B3N f""! =9A! 9 `" HA u (3) + 53"!? @+ A + BG BG a =, Q e = A LC :3!3K K + B3) :3 (4) (3) + 3< non- a = % a = = & w % m Q G -;3 K, :3J K, X3/H }" Z(" Y< K+! =9A! +/ >HO + (5) :* \ + K + B3N K, X3/H }".O! =9A! + +/ w PDC V = % % a a = = w m P P = P >, R n n (6) :3< : +? K H( (5) + 53" [ a M + λ & a M] & a w % m % Q a = = = (7) @I.3 @(" ==A : F λ > +/ >HO = G `" M R n n O K! l/ Y 3/ (+3",D \ K, K @+ @,D \ () +!" 53" :3 +3" [-9]! HA Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< & w & % = m% = = = 58 (8) + K+ n n n n S R, Y R `" Z(". m %, w% K, K K Y m &%, w& % O l= l= w&% S =, =,,..., l a a m&% Y =, =,,..., l a a :3 +3" (8) (9) :O K B3) V & (9) (7) (6) + 53" & % a a % & a a % & a a = = = = = = V & = w m% P + w m% P + w m% P % % & a a & l a l a & l a l a = = l= l= = w m ( P + w P + m P ) % % & a a & l a l a & l a l a = = l= l= = w m ( P + w (P + S ) + m (P + Y ) ) w% m % ( a P & a w& l a l + a + & l a l + a = = l= l= = + + [ a M + λ & a M] & a w% m% Q a = = (P S ) m (P Y ) ) % % & a a & l a l a & l a l a = = l= l= = w m ( P + w (P + S ) + m (P + Y ) + M & MQ + λ & M & λ & MQ ) a a a a a a a a (3) P + S >, P + Y >, =,,...,, =,,..., :, : ' V m & % w & % 9 >P );D = w &% σ, m& % φ (3) :3!3K K B3N (3) + φ σ O % & a a l a l a l a l a = = l= l= V & w m % ( P + σ (P + S ) + φ (P + Y ) + M & MQ + λ & M & λ & MQ ) a a a a a a a a (3).3!3K K B3N (3)! + (7) + Z(" M `" K+ 4 + Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 59 % & a a l a l a = = l= V & w m % ( MM P M M + σ MM (P + D )M M + φ MM (P + F )M M + MM MM M & l= l a l a a a MM MQ M M + λ & MM MM M & a a a a λ & MM MQ M M ) a a (33) :3!3K K B3N (33) + % & a a l a l a = = l= V & w m % ((M ) M P M (M ) + σ (M ) M (P + S )M (M ) & l a l a a a l= + φ (M ) M (P + Y)M (M ) + (M ) M MM (M ) (M ) M MQ M (M ) + λ(m & )M MM (M & ) a a a a λ(m & ) M MQ M (M )) a a (34) : 4) + + (7) +, [!D (34) + K+ K + G+ 53" (M ) M MM (M & ) (M ) M MQ M (M ) a a a a + λ(m & )M MM (M & ) λ (M & ) M MQ M (M ) = a a a a (35) :3 Z(" f (+ K `" u W = M, G = N W, L = W X, V = WP W, Ε = WS W, Ι = WY W, l l & l l a a l= l= ϒ = σ (V + Ε ), Γ = φ (V + Ι ), ζ = W, γ = W ; =,,...,, =,,..., @I. = @( e `" `" W W W = dag[w, W ] O + (35) + J. HA F, D `" ( f `" m n n m N R,X R QW W ζ ζ γ = λqw λw γ :3 K + B3N +3" (36) QW λqw W = λw : +? K + (36) + 53" (37) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 `" + Š^ X< f"" F = dag[i, W,I, W ] n n D = dag[i, W, I, W ] n n `" vm :O K + (37) + AW BG W BG W W A + W LC W ζ ζ γ = A λ W λbg W λbg λw γ λ W A + λw LC λw (38) Ξ = AW BN BG W A + XC :@,D \ :3 K + B3N +3" + (34) + ζ ϒ + Γ + Ξ + Ξ V + W + λξ ζ γ V W (W W ) + + λξ λ + γ V & w% m % = = ζ = wm % % ζ γ Θ = = γ (39) :O Θ = Ω = = = w m Ω ϒ + Γ + Ξ + Ξ V + W + λξ V + W + λξ λ (W + W ) >HO s.3 +? V& < w Ω < D+ 3. V& <! =9A! +/ +.+ O K? A+< +/!. φ σ 3< m&% φ w &% σ + 3 ==A : F λ >,: ]H () - ;3 K, D (7)! K, E K+ LG" (3) +9), -;3-S K, E E :3,D \ K `" D+ + +/! =9A B3) (8) -;3 K, E S = S R, Y = Y R, V = V R, Ε = Ε R n n n n n n n n n n m n n m n n Ι = Ι R, N R, X R, W = W R, W = W W = W R, W = W R, ( =,,...,, =,,..,),( ) n n n n W Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 :3 O K LMI 3< V > V + Ε >, V + Ι > ϒ + Γ + Ξ + Ξ V + W + λξ < ( =,,...,, =,,..,),( ) V + W + λξ λ (W + W ) :O AW BN BG ϒ = σ l (V l + Ε ), Γ = φ l (V l + Ι ), Ξ = l= l= W A + XC :O K B3N L D G HA F, B3)@+ G = N W, =,,..., L = W X, =,,...,?$ h-7 E/ }M3 u" +K " O * \ + K + B3N @( +/ + z3g( E/! :[6] DK++ L? θ && θ = & g sn( θ) aml θ sn( θ) / a os( θ)u 4L / 3 aml os ( θ) (4) E3< L a = / (m + M ) ++ 75 M E/ 75 m P5 v g E/ }M3 u" +K : K B3N! +/ B+u" 6. 3"3 f!a ++ + θ u O E/ m [m m ] = [ 3] kg mn ma M [M M ] = [8 6] kg mn ma L = m = θ 5 π / 5 π / (rad) = θ& [ 5 5] (rad / s) ] :K B3N HA u @,D \ :O K + B3N HA Bh( & g aml os( ) sn( a os( ) ) u = ( ) + & 4L / 3 am 4L / 3 am Los ( ) Los ( ) (4) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 :3,D \ K + B3N K, u g am L os( ) sn( ) a os( ) f () ( ) f ( ) Los ( ) =, = 4L / 3 amlos ( ) 4L / 3 am :O O (4)!-S E (4) Bh( 53" (4) (4) (9) () k+ 53" A = A =, A3 A 4, B B 3, B B4 fmn = = fma = = f = = mn f ma f =.78, f = 8.48, f =.765, f =.6 mn ma mn ma C = C = C = C = C = [ ] 3 4 (43) + 4 +! K! >J" +! (?+ HA B+u" 6 K+ k=, (43) + f=" 3< 3 4 + DK++ L?! E+ HA K+ " 3 : }+3" Z(" + HA E5 B3N D! E K, 3? w3 @/ h 3 : }+3".O (?+! K+.3,D \ K z3g( E/ -S E w3 3 : }+3" : E5 h 3 : }+3" @/ 3 : }+3" µ = µ =.3e M% M% µ = µ = e 3 4 M% M% µ = µ = e 3 M% M% 4 M% M%..5 µ = µ =.5e.5.5 µ = µ = e M% M% 3 4 M% M% 3 M% M% 4 M% M%. µ = µ =.3e µ = µ =.5e µ = µ = e.5.5.5 }" +3CH B3N E w3 K, u J+ 3,D \ K, 3? > E + 3 : }+3". O +? k+ 3< 3,D \ DK++ L? HA u : g () e.35 K B3N = = K, u 53" E w3 @/ h m ( ) = µ ( ) = m ( ) = µ = e N% N%.35 m ( ) = µ ( ) = m ( ) = µ = µ ( ) N% N% N% β = β =.5 :3 +3" E! E K, K h A O + w% w% m% m% w %& = = &, m& % = = & t t Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 63 K B3N E K, E! K, E K Y }" k=, m% w% G+ 53" :O w w m% m% w & % % % & m& % & = =, = = t t & = (w% [ ] w [ ] w 3[ ] w 4[ ] ) + % + + % % = (w% + w% + w% + w% ) = w% = 3 4 = 4 :O E! E K, K K Y h A HA u B+u" 6 53" J :3 6 K B3N E w& % σ = 3.99, w& % σ = 95.77 w& % σ = 7.8, w& % σ = 9.79 3 3 4 4 m& % φ = 4.5, m& % φ = 4.5 :O K B3) D HA F,? K+ 4 + G = [7.5 55.], G =[9.6 554.] 94.696 96.589 L = L =,L3 L4.6 = = 3.973 :K Z9 C H+ k+ 6" + H E*! HA m/ K s () : () : X() = [.3 ] ˆX() = [ ] X() = [.3 ] ˆX() = [ ] m = m mn = kg, M = M mn = 8kg m = m ma = 3kg, M = M ma = 6kg (( ) Z9 C 75 Z9 C 75 3 A + z3g( E/! 3 E K. F 3 + K @C" +! HA 3 D +/ Z9 C H+ k+ m M Z9 C 75 H+ k+ + + O @C" HA m/ () LG. 7= D E 3 D +,+ =" O @C" HA m/ 3 O 53" Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 64 Z9 C 75 H+ k+ + + O @C" HA @ @C" () LG.+ K @C" + HA.+ L 4) K @.5 ()- ((=[.3 ])) (rad) and estmaton of (rad).5 -.5 - ()- estmaton of ((=[.3 ])) ()- ((=[-.3 ])) ()- estmaton of ((=[-.3 ])) -.5.5.5.5 3 3.5 4 4.5 5 tme(se) m = M = 8 = + O @C" m/ :LG.5.5 ()-error between & estmaton of (()=[.3 ]) ()error between & estmaton of (()=[-.3 ]) error -.5 - -.5.5..5..5.3.35.4.45.5 tme(se) m = 3 O 53" Z9 C 75 H+ k+ + + O @C" H+ k+ + + O @C" M = 8 + O @C" @ : LG HA @ @C" (4) LG.+ K @C" + HA m/ (3) LG HA 3 D.+ L 4) Z9 C 75 3 ()- (()=[.3 )] (rad/s) & estmaton of (rad/s) - - ()- estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()- estmaton of (()=[-.3 ]) -3.5.5.5 3 3.5 4 4.5 5 tme(se) m = M = 8 = + O @C" m/ : 3 LG Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 65.5 ()- error between & estmaton of (()=[.3 ]) ()- error between & estmaton of (()=[-.3 ]) error -.5 -.5.5.5 3 3.5 4 4.5 5 tme(se) m = M = 8 + O @C". + Z9 C H+ k+ m = @ : 4 LG M = 8 = + H E* (5) LG 5 5 ()- ontrol sgnal for ()=[.3 ] ()- ontrol sgnal for ()=[-.3 ] u -5 - -5.5.5.5 3 3.5 4 4.5 5 tme(se) m = M = 8 + u H E* :5 LG M = 6 = + K (Z9 C 75) ( L= D E 3 7= + + 75 H+ k+ + + O @C" HA m/ (6) LG.+ 7J+ Z9 C H+ k+ m = 3 +,+ =" O @C" HA m/ 3 O 53" Z9 C H+ k+ + + O @C" HA @ @C" (7) LG.+ K @C" + HA 3 D.+ L 4) K @ Z9 C 75 3 O 53" Z9 C 75 H+ k+ + + O @C" H+ k+ + + O @C" HA @ @C" (9) LG.+ K @C" + HA m/ (8) LG HA 3 D.+ L 4) Z9 C 75 Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 66.5 ()- (()=[.3 ]) (rad) and estmaton of (rad).5 -.5 - ()-estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()-estmaton of (()=[-.3 ]) -.5.5.5.5 3 3.5 4 4.5 5 tme(se) º =» = µ¹ + O @C" µ m/ :6 LG.5.5 ()-error between & estmaton of (()=[.3 ]) ()error between & estmaton of (()=[-.3 ]) error -.5 - -.5.5..5..5.3.35 tme(se) m = 3 M = 6 + O @C" @ :7 LG 3 ()- (()=[.3 ]) (rad/s) and estmaton of (rad/s) - - ()-estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()-estmaton of (()=[-.3 ]) -3.5.5.5 3 3.5 4 4.5 5 tme(se) m = 3 M = 6 = + O @C" m/ : 8 LG Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 67.5 ()- error between & estmaton of (()=[.3 ]) ()- error between & estmaton of (()=[-.3 ]) error -.5 -.5.5.5 3 3.5 4 4.5 5 m = 3 M = 6 tme(se) + O @C" @ :9 LG 5 5 ()- ontrol sgnal for ()=[.3 ] ()- ontrol sgnal for ()=[-.3 ] u -5 - -5.5.5.5 3 3.5 4 4.5 5 tme(se) m = 3 M = 6 + u H E* :LG :3 L: K B3N HA K+ HA @C" G+ 53" + e = ˆ ˆ e& = & & e = ˆ e& = & ˆ& :3 +3" h k+ 4 + 53" e = e& + ˆ ˆ G+ O HA @C" Y f!a ++ B3N HA @C" G+ 53" + +3 D> += : 6H K+ O Y @ 3 4) 9 K HA @C". HA K+ HA @C" J.3 d w3 D b-8 @(! K, KE +9), -;3 K, Y -S K, E K+ 4 + + + H= @+ K+ 4 + H= @+. +/ K, E D KE E @ z+ `Q. +/ Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 68? F 6" E D! K, E E! + +/ >HO s K, X3/H }" + 3: X3/H }" K+ 4 + ld A+< [ e+. (LMI)!"! B3N K +5 G K+ 4 +.+ 4 + A+< + (PDC) K+3 }K3" K +5 G +/ >HO @+3? L?+A @,D \ +3" b+< 3< E {: (non-pdc) K+3 }K3" K s 53". + PDC G! "O K / E + K, + +9), -;3 K, D @I. 7= ++ 3 A+< @+ +E. 7= K, D F 3 K @C" 3 +! HA ( Z9 C = X# []. K. anka,. lkeda and H.. Wang, Fuzzy Regulators and Fuzzy Observers: Relaed Stablty ondtons and LMI based Desgn, IEEE ransatons on Fuzzy Systems, vol. 6, no.,.5-65, 998. []. Chen, B.S., eng, C.S., Uang, H.J. Med H / H fuzzy outut feedbak ontrol desgn for nonlnear dynam systems: an LMI aroah, IEEE rans. Fuzzy Syst., vol 8,. 49-65,. [3]. Lu, X., Zhang, Q. New aroahes to H ontroller desgns based on fuzzy observers for akag Sugeno fuzzy systems va LMI, Automata, vol. 39,. 57-58, 3. [4]. Ln, C., Wang, Q.G., Lee,.H, Imrovement on observer- based H ontrol for -S fuzzy systems, Automata, vol 4,. 65-656, 5. [5]. Yoneyama, J., Nshkawa, M., Katayama, H., Ihkawa, A.: Outut stablzaton of akag-sugeno fuzzy systems, Fuzzy Sets Syst, vol,. 53 66, [6]. Ma, X.J., Sun, Z.Q., He, Y.Y. Analyss and desgn of fuzzy ontroller and fuzzy observers, IEEE rans. Fuzzy Sys., vol 6,. 4-5,. [7]. eera, M.C.M., Assunao, E., Avellar, R.G. On relaed LMI-based desgn for fuzzy regulators and fuzzy observers, IEEE trans. Fuzzy Syst, vol,.63-63, 3. [8]. seng, C.S. A novel aroah to H deentralzed fuzzy-observer-based fuzzy ontrol desgn for nonlnear nteronneted systems, IEEE rans. Fuzzy Syst., vol 6, 8. [9]. K. anaka,. Hor, and H. O. Wang, A multle Lyaunov funton aroah to stablzaton of fuzzy ontrol systems, IEEE rans. Fuzzy Syst., vol, no. 4,. 58-589, Aug. 3. []. K. anaka,.hor and H.O.Wang, A desrtor system aroah to fuzzy ontrol system desgn va fuzzy Lyaunov funton, IEEE ransatons on Fuzzy systems, vol.5, no.3,. 333-34, 7. []. H. K. Lam, Stablty analyss of CS fuzzy ontrol systems usng arameterdeendent Lyaunov funton, IE ontrol theory & Alatons, vol.3, no.6,. 55-76, 9. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3

K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 69 []. D.H.Lee, J.B.Park and Y.H.Joo, A New Fuzzy Lyaunov funton for relaed stablty ondton of ontnuous tme akag-sugeno Fuzzy Systems, IEEE ransatons on Fuzzy Systems. vol 9. no.4,. 785-79,. [3]. L. A. Mozel, R.M Palhares, F.O.Souza and E.M.A.M.Mendes, Redung onservatveness n reent stablty ondton of -S fuzzy systems, Automaton, vol.45, no.6,,.58-583, 9. [4]. ao Zhao, Jan Xao, ye L and YXng L, A Fuzzy Lyaunov Funton Aroah to Stablzaton of Interval ye- -S Fuzzy Systems, IEEE Control and Deson Conferenes (CCDC).,.34-38, 3. [5]. J.M. Mendel, R.I. John, and F.Lu, Interval tye- fuzzy log systems made smle, IEEE rans. Fuzzy Syst., vol. 4, no.6,. 88-8, De. 6. [6]. H. K. Lam and L. D. Senevratne, Stablty analyss of nterval tye- fuzzy-modelbased- ontrol systems, IEEE rans. Syst., Man, Cybern. B, Cybern. vol.38, no.3,. 67-68, Jun.8. [7]. H. K. Lam, M. Narman, and L.d senevrtane, LMI-based stablty ondtons for nterval tye- fuzzy log based ontrol systems, n ro. IEEE Int. Conf. Fuzzy Syst.,. 98-33,. [8]. Lam, H.K.; Hongy L; Deters, C.; Seo, E.L.; Wurdemann, H.A.; Althoefer, K., Control Desgn for Interval ye- Fuzzy Systems Under Imerfet Premse Mathng, Industral Eletrons, IEEE ransatons on, vol.6, no.,.956-968, Feb. 4. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3